Short Communication

Dimroth's $E_{\rm T}(30)$ as parameters of solvent polarity: a caveat

M. S. TUNULI, M. A. RAUF and FARHATAZIZ

Department of Chemistry, Texas Woman's University, P.O. Box 23973, Denton, TX 76204 (U.S.A.)

(Received June 8, 1983; in revised form December 1, 1983)

In 1963 Dimroth *et al.* [1] pointed out that the electronic transition energies $E_{\rm T}$ (now popularly known as $E_{\rm T}(30)$ parameters) defined by $E_{\rm T}$ (kcal mol⁻¹) = $hc\bar{\nu}N$

$$= 2.859 \times 10^{-3} \bar{\nu} \,(\mathrm{cm}^{-1}) \tag{1}$$

can be used as empirical parameters of solvent polarity. In eqn. (1), h, c and N stand for Planck's constant, the velocity of light and Avogadro's number respectively, and $\bar{\nu}$ represents either $\bar{\nu}_a$ (the frequency of the absorption maximum) or $\bar{\nu}_e$ (the frequency of the emission maximum). Extensive lists of $E_T(30)$ parameters of solvents are available [2]. These parameters were obtained by using a solvatochromic dye, pyridiniophenolate (P), as a standard and by determining its $\bar{\nu}_a$ in a series of solvent media. Today, utility of $E_T(30)$ parameters to interpret the environmental effects of solvents on the photophysical properties of dyes is a popular practice [3 - 5].

It is the purpose of this note to caution against the use of listed values of $E_{\rm T}(30)$ parameters. In cases involving dyes other than P, it cannot be assumed that $\bar{\nu}_{e}$ (or $\bar{\nu}_{e}$) is independent of the chemical nature of the dye molecules. Given this, any use of $E_{T}(30)$ parameters to establish correlations for other dyes becomes questionable. To demonstrate this, let us consider two dyes P and Q which in their excited states, P^* and Q^* , behave differently with respect to their interactions with the surrounding medium, e.g. a polar solvent. We further require that P^* strongly interacts (e.g. via electrostatic interactions) with the solvent while Q* does not. This allows the identification of P with dyes such as 2,6-diphenyl-4,2-(2,4,6-triphenyl-1-pyridiniophenolate) which has been used to derive extensive tables of $E_{\rm T}(30)$ parameters and of Q with molecules such as 3-(α -naphthyl)benzo[b]thiophen whose emission maxima in a number of solvents have been correlated by Lablache-Combier et al. [3] to the $E_{T}(30)$ parameters. Let us now consider another dye, R, which in its excited state behaves as P*. An example of such dye is N,N-dimethyl-6-[(4-methylphenyl)amino]-2-naphthalenesulfonaa mide. Emission maxima $\bar{\nu}$ of P, Q and R in a number of polar solvents

0047-2670/84/\$3.00

$\bar{\nu}_{Q} \times 10^{-4} \text{ b}$ (cm⁻¹) $\overline{\nu}_{\rm R} \times 10^{-1}$ (cm⁻¹) -4 c $\frac{\bar{\nu}_{\rm p} \times 10^2}{({\rm cm}^{-1})}$ $E_{\rm T}(30)$ Solvent $(kcal mol^{-1})$ 57.01.994 2.7211,2,3-propanetriol 56.3 1,2-ethanediol 1.969 2.701Methanol 2.755 1.931 55.5 1.941 2.022 Ethanol 1.815 2.755 51.9 2.050 50.7 1-propanol 1.773 2.801 2,799 2.081 50.2 1.756 1-butanol 2.090 50.7 1-pentanol 1.773 2.77448.6 2-propanol 1.700 2.809____ 46.9 Cyclohexanol 1.641 2.7282.74546.52-pentanol 1.6262.13448.8 1-hexanol 1-octanol 2.16948.3 2.193 47.6 1-decanol 1-dodecanol 2.21446.7

Transition energies and the frequencies corresponding to the emission maxima of P, Q and R in different solvents

^a From ref. 2.

^bFrom ref. 3.

^c From ref. 6.

together with $E_{\rm T}(30)$ solvent polarity parameters are given in Table 1 and a plot of $\bar{\nu}$ versus $E_{\rm T}(30)$ is given in Fig. 1. The absolute values of the slope |m| of the $\bar{\nu}$ versus $E_{\rm T}(30)$ plot are 3.5×10^2 cm⁻¹ mol kcal⁻¹, 0.00 cm⁻¹ mol kcal⁻¹ and 3.3×10^2 cm⁻¹ mol kcal⁻¹ for P, Q and R respectively.

Clearly, should one wish to extend the utility of $E_{\rm T}(30)$ parameters of dye P to another dye Z, then the criterion of this applicability is

Fig. 1. Shifts in emission maxima of P ($^{\circ}$), Q ($^{\triangle}$) and R (X) plotted against the $E_{\rm T}(30)$ solvent parameters.

TABLE 1

 $|m_{\rm P}| = |m_{\rm Z}|$

It is now worth noting that for $Z \equiv Q$, $|m_P| \neq |m_Q|$. However, for $Z \equiv R$, the equality $|m_P| = |m_R|$ firmly holds.

From the foregoing, we conclude that $E_{\rm T}(30)$ parameters have their meanings only for dyes which in their excited states interact with the solvent medium as P^{*} does and that the utility of $E_{\rm T}(30)$ parameters cannot be extended to other dyes of different chemical nature.

The work reported here was supported by the Robert A. Welch Foundation under Grant M-721.

- 1 K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, Justus Liebigs Ann. Chem., 661 (1963) 1.
- 2 C. Reichardt, Angew. Chem., Int. Edn. Engl., 18 (1979) 98.
- 3 A. Lablache-Combier, B. Planckaert and A. Pollet, J. Photochem., 21 (1983) 61.
- 4 D. C. Dong and M. A. Winnik, Photochem. Photobiol., 35 (1982) 17.
- 5 S. Dahne, W. Freyler, K. Teuchner, J. Dobkowski and Z. R. Grabowski, J. Lumin., 22 (1980) 37.
- 6 D. Huppert, H. Kanety and E. M. Kosower, Chem. Phys. Lett., 84 (1981) 48.